DÉVELOPPEMENT

Théorème de l'application ouverte

Nathan Fournié

<u>Walter Rudin</u>, Analyse complexe et réelle. Daniel Li, Cours d'analyse fonctionnelle.

THÉORÈME: THÉORÈME DE L'APPLICATION OUVERTE

Soit E et F deux espaces de Banach, et T une application linéaire continues surjective de E vers F, alors il existe une constante c>0 telle que :

$$B_{E}(0,c) \subset T(B_{E}(0,1)).$$

T est donc une application ouverte.

Démonstration

Montrons dans un premier temps qu'on a l'inclusion suivante :

$$B_{\text{F}}(0,2c) \subset \overline{\mathsf{T}(B_{\text{E}}(0,1))}$$

pour un certain c>0. Par surjectivité de T, pour tout $y\in F$, il existe un n tel que y admette un antécédent dans la boule $B_E(0,n)$, on peut alors écrire :

$$F = \bigcup_{n \in \mathbb{N}^*} \overline{T(B_E(0,n))}.$$

Cette réunion de fermés est d'intérieur non vide, donc par la contraposé du théorème de Baire, on peut trouver un n_0 tel que l'ensemble $\overline{T(B_E(0,n_0))}$ soit d'intérieur non vide. Il existe alors $y_0 \in F$ et $r_0 > 0$ tels que :

$$B_F(y_0,r_0)\subset \overline{T(B_E(0,n_0))}.$$

Puis, par linéarité de T et symétrie par rapport à 0 de $B_E(0,r_0)$ on voit que :

$$B_{F}(-y_{0},r_{0})\subset\overline{T(B_{E}(0,n_{0}))}.$$

Enfin, $T(B_E(0,n_0))$ est l'image d'un convexe par une application linéaire et continue, donc c'est elle-même un convexe. Ce faisant, toute combinaison convexe de ses sous-ensembles appartient encore à $T(B_E(0,n_0))$. Donc :

$$\frac{1}{2}(B_{F}(y_{0},r_{0})+B_{F}(-y_{0},r_{0}))\subset\overline{T(B_{E}(0,n_{0}))}$$

Or, $B_{\text{F}}(y_0,r_0) + B_{\text{F}}(-y_0,r_0) = B_{\text{E}}(0,2r_0)$ donc b :

$$B_{F}(0,2r_{0})\subset 2\overline{T(B_{F}(0,n_{0}))}=2\overline{n_{0}T(B_{E}(0,1))}=2n_{0}\overline{T(B_{E}(0,1))},$$

donc, en posant $c=\displaystyle\frac{r_0}{2n_0}$ on obtient bien :

$$B_{\mathsf{F}}(0,2c) \subset \overline{\mathsf{T}(\mathsf{B}_{\mathsf{E}}(0,1))} \tag{\dagger}$$

Montrons à présent que :

$$B_{E}(0,c) \subset T(B_{E}(0,1)).$$

Prenons alors un $y\in B_F(0,c)$, par (†) on sait que $y\in \overline{T(B_E(0,\frac{1}{2}))}$, c'est à dire que l'on peut approcher y aussi près que l'on veut par l'image par T d'un élément de $B_E(0,\frac{1}{2})$. En d'autre termes, pour tout $\epsilon>0$, il existe un $x\in B_E(0,\frac{1}{2})$ tel que :

$$\|\mathbf{y} - \mathsf{T}(\mathbf{x})\| \leqslant \varepsilon$$
.

Pour $\epsilon=\frac{c}{2}\text{, notons }x_1$ l'élément de $B_{\text{E}}(0,\frac{1}{2})$ tel que :

$$\|y-\mathsf{T}(x_1)\|\leqslant \frac{c}{2}.$$

Donc, $y_1 := y - T(x_1) \in B_F(0, \frac{c}{2})$, par (\dagger) on a $y_1 \in \overline{T(B_E(0, \frac{1}{4}))}$ et on peut de la même façon trouver un $x_2 \in B_E(0, \frac{1}{4})$ tel que :

$$\|y_1 - T(x_2)\| = \|y - T(x_1) - T(x_2)\| = \|y - T(x_1 + x_2)\| \leqslant \frac{c}{4}.$$

On construit ainsi par récurrence une suite (x_n) vérifiant, pour tout n :

$$x_n \in B_E(0,\frac{1}{2^n}) \quad \text{et} \quad \|y-T(x_1+...+x_n)\| \leqslant \frac{c}{2^n}$$

On remarque alors que :

$$\sum_{n\in\mathbb{N}^*}\|x_n\|\leqslant \sum_{n\in\mathbb{N}^*}\frac{1}{2^n}=1.$$

Donc c , la suite $(\sum_{n\in\mathbb{N}^*} \chi_n)$ converge absolument, comme on est dans un Banach, elle converge d . Notons χ sa limite, comme on a :

$$\|\mathbf{x}\| \leqslant \sum_{\mathbf{n} \in \mathbb{N}^*} \|\mathbf{x}_{\mathbf{n}}\| \leqslant 1$$

on sait que $x\in B_E(0,1)$. De plus, par construction, on sait que la suite $(\mathsf{T}(\sum_{n\in\mathbb{N}^*} x_n))$ converge vers y dans F. Par continuité de T, on voit alors que :

$$y = T(x)$$
.

Ceci achève la preuve de la première partie, on a bien $y \in T(B_E(0,1))$.

Il nous reste encore à montrer que T est une application ouverte, pour cela prenons un ouvert U de E et montrons que T(U) et un ouvert de F. Soit $y \in T(U)$, il existe alors $x \in U$ tel que y = T(x). Comme U est ouvert on peut trouver un rayon r > 0 tel que :

$$B_{F}(x,r) \subset U$$

Or, tout élément de $B_E(x,r)$ peut s'écrire de la forme x+rx' avec $x'\in B_E(0,1)$. Donc :

$$x + rB_E(0,1) \subset U$$
,

qui nous permet d'avoir :

$$T(x + rB_E(0, 1)) = T(x) + rT(B_E(0, 1)) \subset T(U).$$

Et enfin, en utilisant la première partie on trouve un c>0 tel que :

$$y + rB_F(0, c) = B(y, rc) \subset T(U)$$

Ce qui achève définitivement la preuve.

- c. Suite positive bornée.
- d. Caractérisation des Banach.

Dernière compilation le 20 août 2025.

a. On définit $A+B=\{a+b\ ,\ a,b\in A\times B\}.$ De plus, une combinaison convexe de sous-ensemble de A est de la forme $\sum_{k=1}^n \alpha_k A_k$ avec $A_k\subset A$ et $\sum_{k=1}^n \alpha_k=1$

b. T est linéaire!